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Abstract 

Natural behavior of a single artificial intelligence or even entire groups is a great 

challenge but also necessary for the immersion in video games. The object of this 

bachelor thesis is to find and implement the best technique for natural artificial 

intelligence behavior in “Cosmonautica”, Chasing Carrots’ next game. 

The well-known finite state machines and the more sophisticated hierarchical finite 

state machines are simple but can hardly be re-used. Goal-oriented behavior (GOB) 

shines when used for planning a sequence of actions in the goal-oriented action 

planning technique. The utility functions used in GOB are relatively simple and 

useful for comparing many options. Another considered technique is fuzzy logic, 

which uses so-called degrees of memberships to represent the states of game 

objects. These memberships are well suited for perceptions like feeling cold or 

endangered. Rule-based systems can become complicated but support fine-grained 

behaviors. Behavior trees work with a tree structure and several node types to 

decide which actions are triggered. They are very flexible and can be modified very 

fast to be used in completely different situations. 

The comparison of the different decision-making techniques shows that behavior 

trees combined with utility functions are the best choice for “Cosmonautica” due to 

their overall composition of power, performance, complexity, re-usability, and 

maintainability. 

Now, behavior trees are used in “Cosmonautica” to control the behavior of 

crewmembers in the player's space ship as well as the enemy ships in space fights. 

They determine e.g. in which situations the crew members work or when a need has 

to be satisfied. Utility functions are used to compare all possible actions to decide 

which work task or activity needs to be done. 

This combination of behavior trees and utility functions has proved to be an easy 

and powerful way to control the behavior of artificial intelligences. Because of its 

qualities, it can and should replace many state machines in object-oriented 

programs. 

 

Key words: Artificial intelligence, Decision-making, Behavior, Behavior tree, Utility 

function, Finite-state machine, Fuzzy logic, Goal-oriented behavior, Rule-based 

system 
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1. Overview 

The requirements of software projects can vary with the situation of the involved 

companies. The practical part of this thesis is used in a project of a very small 

development team and therefore has to respect some special requirements. Because 

of this, the overall situation of the company and the project is important for 

understanding this thesis. Cosmonautica
1

 is the second game of the small 

independent game development studio Chasing Carrots KG
2

 in Stuttgart, Germany. It 

is currently in a very early stage of development. Some parts such as the 

crewmember-class do already exist but their behaviors are just placeholders. The 

new decision-making system has to fit between the existing classes. Some work has 

been done but there is much more to do. Therefore, fast development is not only 

very important for Cosmonautica but also for the game development in general. 

This means for the development staff that it focuses more on fast results than on 

good documentation. As a result, only a few unit tests are made and these are just 

for the core systems like the behavior trees. These unit tests are also meant as a 

kind of a tutorial showing how to use the system. The core systems are part of the 

code base that Chasing Carrots will use for further games. 

Cosmonautica is a game combining Sims
3

-like management of the crewmembers of 

a space ship with trading and fighting in space. Crewmembers choose their actions 

on their own based on their skills and needs, instead of being chosen directly by the 

players. This decision-making process is the main object of this thesis. The same 

system will also be used for different situations such as crewmembers being on 

ground missions or being on the ship in space fights. 

The natural and logical behavior of non-player characters is crucial for the 

immersion of most games. As the player has no direct control over the decisions of 

their crewmember, it is even more important to create behaviors without “brain 

failures”. Deciding to repair the wrong room could be such a dead wrong decision, 

which would lead to the frustration of the players. 

Decision-making is a part of the artificial intelligence. Academic AI usually shows 

how intelligent a system can be. Game AI in contrast has the aim to create good-

looking behavior with emphasize on “looking”. It can happen that a more stupid 

behavior enables a better game experience. On the pages 19 and 20 in (Millington & 

Funge, 2009) is described how the relatively stupid behavior of the ghosts in Pac-

Man can look intelligent in a group. However, the behaviors in Cosmonautica will 

require more effort than the semi-random decisions of Pac-Man. Intelligent game 

characters are relevant for the game design as they may affect the difficulty. 

                                           

1

 http://cosmo-nautica.com/ 

2

 http://chasing-carrots.com/ 

3

 http://www.thesims.com/ 

http://cosmo-nautica.com/
http://chasing-carrots.com/
http://www.thesims.com/


Overview  10 

  

 

Figure 1: Key visual of Cosmonautica 

This concept art shows several parts and possible features of Cosmonautica: 

crewmembers on a space ship attacking another ship with a torpedo; characters 

doing tasks like hacking, science, repairing, and cleaning; robots; a spider-like 

critter; and an extraterrestrial. 
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2. Task and Scope 

To prepare the practical part of this thesis, all decision-making techniques that 

come into question have to be compared in order to find the best one for 

Cosmonautica. Afterwards, the chosen technique has to be implemented with re-

usability in mind, re-usability in general and the re-usability of behaviors in 

particular. As the planned system will be a part of games with reasonable high 

hardware requirements, it has to be implemented in C++ just like the games 

themselves. As a part of the Chasing Carrots code base, the decision-making core 

system has to be independent from individual games. The behaviors for 

Cosmonautica have to be in the Cosmonautica base code what means that they 

must be independent from the game's engine. 

Many decision-making processes need knowledge about all available options, which 

will change regularly with the game design. Therefore, the decision-making system 

needs to be flexible enough to support every change. Although no game designer is 

modeling the behaviors right now, it can be necessary in the future. This means that 

easy modification of the behavior by non-programmers is an aim, which should be 

kept in view. Maybe the behaviors have to be controlled by scripts in the future to 

keep the modification easy for the game designers. 

The decision-making system is meant mainly for the crewmembers of the player’s 

space ship. It is planned to choose the work they do or how to satisfy their needs. 

Then, the system should control how they do what they do to ensure everything 

looks natural. In short, the decision-making system must be powerful enough to 

support Sims-like behavior and it must be flexible enough for any possible change 

in the future. Crewmembers like these cannot wait to receive some intelligence: 

 

Figure 2: Random-generated crewmember portraits  
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3. State of the Art 

Several techniques for decision-making are available but the games industry is 

mostly using state machines. Only a few bigger developers work with advanced 

techniques like goal-oriented behavior. Behavior trees are experiencing an 

increasing popularity right now. Fuzzy logic is “[…] largely discredited within the 

mainstream academic AI community” (Millington & Funge, 2009, p. 371). 

Nevertheless, it was used in several games. Although rule-based systems are 

relatively popular as a technique for expert systems, they are hardly used for games. 

STRIPS and Hierarchical Task Networks are not described here because they are 

planning algorithms. As planning is not necessary in Cosmonautica and these 

algorithms are usually quite complicated, they are not considered. Blackboard 

architectures are also not described, as they are only useful in cases where multiple 

decision makers search a solution together. Such a cooperative artificial intelligence 

is not planned for Cosmonautica. Most of the information in this chapter is 

extracted from chapter 5 “Decision Making” of (Millington & Funge, 2009). Another 

great source of information about artificial intelligence for games is 

AiGameDev.com, a commercial website by Alex J. Champandard. 

3.1. State Machines 

Millington and Funge (2009) say on page 309 about the popularity of state machines 

that they are used in the “vast majority of decision-making systems used in current 

games.” They are also widely used for the low-level programming of embedded 

systems such as digital watches or vending machines. As they are intuitive, they are 

also used for normal applications. Games often have state machines for both game 

managers and common game objects like non-player characters. 

Modeling is usually done in the UML notation. Several tools exist for aiding 

engineers to model and program. Some of these tools, such as QM by Quantum 

Leaps
4

 even convert the model into a code skeleton, which is typically C-code. State 

machines can be combined with other techniques, for example fuzzy logic, decision 

trees, and Markov systems. 

As stated in (Millington & Funge, 2009) on page 315, state machines in general are 

slow because of "many virtual method calls". "They are also difficult to maintain 

[...]", (Millington & Funge, 2009, p. 318). This applies to both finite-state machines 

and hierarchical state machines. 

3.1.1. Finite-State Machines 

Finite-state machines can have exactly one state at a time. Their states are 

connected by transitions. Those transitions can have conditions and actions. States 

can execute code on “enter” and “leave” events. A state may also trigger code every 

time it is updated while running. (cf. Millington & Funge, 2009, p. 309/310) 

Here is an example that shows how a simple guard behavior in a fantasy game 

context can be modeled with a finite-state machine. This guard starts with the patrol 

                                           

4

 http://www.state-machine.com/qm/ 

http://www.state-machine.com/qm/
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state. When the patrol state is entered or left, the guard reports to his sergeant. As 

long as he is patrolling, he follows his path. As soon as he notices an enemy, he 

switches to the “engage enemy” state what causes him draw his weapon. He follows 

and attacks the enemy. When no enemy is in sight, no matter if he has been 

defeated or just disappeared, the guard puts away his weapon and returns to the 

patrol state. 

 

Figure 3: Simple guard behavior as a finite-state machine 

Now, the guard’s behavior is to be extended by drinking a healing potion if he is 

hurt. Therefore, a “drink potion” state is required. This state must be connected not 

only with the “engage enemy” state but also with the “patrol” state. Otherwise, he 

would be hobbling on his patrol after fighting. After drinking the potion, the guard 

should return immediately to the state he just left. Therefore, two “drink potion” 

states are required because a normal state does not remember from where it was 

entered. 

 

Figure 4: Extended guard sample 

Another solution could be to make only one “drink potion” state but with a transition 

to both the “patrol” and the “engage enemy” state guarded by special condition 

checks. This solution has the drawback that a transition has to be added every time 

another state has been added. This way, the state machine will become less and less 
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re-usable. No matter which solution is used, the finite-state machine will be 

unnecessarily complicated, bad to maintain, and probably redundant. “Meta-states” 

such as the “drink potion” state can be entered from many other states and they 

should return typically to the previous state. As they always cause trouble for finite-

state machines, hierarchical state machines are designed to deal with them. 

Meta-states are not the only problem of finite-state machines. Champandard also 

criticizes: "FSM don’t provide ways for reusing logic in different contexts, which 

leaves you with a choice of two evils: redundancy or complicatedness." 

(Champandard, The Gist of Hierarchical FSM, 2007) 

3.1.2. Hierarchical State Machines 

The next model shows how the extended guard sample would be modeled for a 

hierarchical state machine. Obviously, the redundancy is removed. The “patrol” and 

“engage enemy” states are now sub-states of “guard”. The “drink potion” returns to a 

history node within the “guard” state. This history node remembers from which sub-

state the composite state has left and returns to it when the composite state is 

entered again. 

 

Figure 5: Extended guard sample as a hierarchical state machine 

Each state can only have one active sub-state. The number of hierarchy layers is only 

limited by the complexity a human can handle. Hierarchical state machines are 

evaluated recursively. Millington and Funge (2009) describe how on pages 321 and 

322: each state asks its current state to return its hierarchy. If a state is the lowest 

state in the hierarchy, it returns itself. If not, it returns itself plus the state from its 

own current sub-state. The update works similarly. Every current state in the 

hierarchy does a transition if the condition is fulfilled. If a transition is done, other 

transitions lower in the hierarchy are not considered anymore. 



State of the Art  15 

  

As shown in the example, the hierarchical state machines can express the same 

behavior of a finite-state machine even without redundancy. Their implementation 

and modeling are somewhat more complicated than finite-state machines. 

3.2. Fuzzy Logic 

Fuzzy logic is a representation of information that is less mathematical but more 

human. In contrast to most other decision-making techniques, fuzzy logic does not 

work with the crisp clear logical values “true” and “false”. Instead, it includes a blurry 

line between those two values and deals with it. Therefore, fuzzy logic lends itself to 

work with the perceptions of non-player characters. 

Fuzzy logic is based on the predicate logic. These predicates can be something like 

“has ammo”. Everything that has ammo is in a so-called set. Fuzzy logic adds a value 

to the predicates. Here, the value shows how much ammo something has. This value 

is also called degree of membership of a set. A zero degree of membership means 

that the predicate owner is no part of the set in the classical logic and one means 

that it is a full member. However, values in between these extremes only have a 

meaning in the fuzzy logic (cf. Millington & Funge, 2009, p. 372). Although they can 

be handled like them, fuzzy values are not the same as probabilities, as said in 

(Millington & Funge, 2009) on page 372. 

An object can be a member of multiple fuzzy sets. No set makes it impossible to 

become a member of another set. Therefore, an object could be a member of both 

“feeling cold” and “feeling hot” fuzzy sets. The process of translating a value to 

degrees of membership is called “fuzzyfication” in (Millington & Funge, 2009) on 

page 373. 

One kind of information can be translated into several values. For example, one 

value of temperature can be converted into different values for feeling cold, warm, 

and hot. 

 

Figure 6: Fuzzy logic temperature example 
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Note how neighboring fuzzy sets overlap each other. In this example, the object 

cannot be a member of both the “cold” and “hot” fuzzy sets, but this is excluded by 

the fuzzyfication functions and not by the fuzzy logic in general. These functions 

can be as complicated as needed for the application. However, they have to be 

updated every time the value changes which can cost a lot of computation time. 

A character may simply use these degrees of membership to make its decisions. For 

example, a character could go nearer to a campfire if he has at least a 0.8 degree of 

membership of the “cold” fuzzy set. With this approach, there will be no blending 

between “next to the campfire” and “normal”. To improve this, all related fuzzy sets 

have to be “defuzzyficated” into a single value. The “center of gravity” method from 

page 377 of (Millington & Funge, 2009) could be used for instance. 

So-called fuzzy logic operators can be used to combine several values. Those fuzzy 

logic operators are similar to traditional logic operators. The following table is from 

page 380 of (Millington & Funge, 2009): 

Expression Equivalent Fuzzy Equation 

NOT A  1 – m
A

 

A AND B  min(m
A

, m
B

) 

A OR B  max(m
A

, m
B

) 

A XOR B NOT(B) AND A min(m
A

, 1 – m
B

) 

B XOR A NOT(A) AND B min(1 – m
A

, m
B

) 

A NOR B NOT(A OR B) 1 – max(m
A

, m
B

) 

A NAND B NOT(A AND B) 1 – min(m
A

, m
B

) 

Table 1: Fuzzy logic operators according to (Millington & Funge, 2009) 

Fuzzy rules exist to calculate new membership values out of existing ones using 

fuzzy logic operators. In this example, the membership of a “is at campfire” fuzzy 

set is calculated. The character is at the campfire if he feels cold and is not guarding 

the camp: 

m
(Is at campfire)

 = min(m
(feeling cold)

 > 0.8, 1 – m
(is guarding)

) 

With all this fuzzyfication, defuzzyfication, and processes involved, the entire fuzzy 

logic technique is clearly more complicated than e.g. a state machine. This 

technique has another drawback: it must calculate all set memberships instead of 

just considering the likely important values. 

3.3. Markov Systems 

A fuzzy state machine can be in several states at the same time. They can be 

described better using the Markov processes. Here is a short introduction from 

(Millington & Funge, 2009), page 398: “In mathematics, a first-order Markov process 

is any probabilistic process where the future depends only on the present and not 

on the past. It is used to model changes in probability distribution over time.” 

The state vector, also known as the distribution vector, contains a value for each 

state. These values can represent e.g. the number of enemies at a place, or more 

general the degrees of membership of each state. Instead of a state vector, a 

probability vector can be used. This probability vector contains the percentage of 
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enemies at a place. Probability vectors sum up to one. Both vector types contain only 

non-negative numbers. 

The transition matrix determines the probability for a transition from every state to 

every state, including the origin state. The state vector can be multiplied with the 

transition matrix to calculate the state vector of the next step. This multiplication 

can be repeated as often as needed. Waner (2004) offers an easy explanation of 

Markov systems with a complete example. However, this site contains only the 

mathematic basics, no real-world applications. 

The degrees of membership of the states in a fuzzy state machine can be put into a 

state vector and then multiplied with a transition matrix. There can be different 

transition matrices for different situations. For example, each transition can apply a 

different transition matrix to the state vector. Now the transitions belong to the 

entire state machine, not only to single states. Given that, a character can switch its 

fuzzy states over time or in an instant using this Markov state machine. 

Here is an example for using the Markov state machine consisting of just two states: 

1. Walk carefully 

2. Walk fast 

The initial state vector is           meaning that the character is a 25% member of 

the “Walk carefully” state. It is also an 80% member of the “Walk fast” state. 

Two transitions are sufficient for this example: 

1. “Under fire” with the transition matrix  
    
  

  

2. “Got hurt” with the transition matrix  

      

         

          

        

      

         

          

        

  

The character is patrolling and then suddenly, it is hit by an enemy sniper taking 

half of his health. Therefore, the “got hurt” transition is triggered, which causes the 

character’s state vector to be multiplied with the transition matrix: 

           
    
    

               

As a degree of membership greater than 1 makes no sense, the resulting state 

vector is clamped to         . After he was hit, the character will now run for his 

life but will take cover more often. Sometimes, it can be necessary to add some 

numbers directly within a transition matrix, not just to multiply with it. Extending 

the transition matrix by one dimension, just like homogenous coordinates, can be 

one solution to achieve this. 

The entire Markov state machine system can be quite complicated to understand 

and implement, especially as it requires at least parts of the fuzzy logic system. 

Depending on the size of the transition matrices, this approach might not be 

applicable with “single instruction multiple data” chips, which would cost even more 

computation time. It also scales quite badly with a growing number of states 
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because every time a state is added, all existing transition matrices have to be 

updated. Markov state machines, like all other state machines, can hardly be reused 

for similar characters because states have to be exchanged and again all transition 

matrices must be updated. Markov state machines share some other drawbacks with 

the fuzzy logic it is based on. For example, they also deal with degrees of 

membership, not with probabilities. 

Although Markov state machines are an interesting technique, they are hardly used 

in games. This is most likely because the developers do not know them or try to 

avoid the implementation effort. However, if a character is blending its behavior 

based on perceptions, Markov state machines might be something to consider. 

3.4. Goal-Oriented Behavior 

All other techniques described here do mostly react to events. Goal-oriented 

behavior is different in this regard. It allows characters to follow their own goals and 

desires. As said in (Millington & Funge, 2009) on page 402, goal-oriented behavior 

is not a special algorithm but a rather vague category of techniques. Many 

techniques can be used for characters to seem as if they had goals but the goal-

oriented techniques really simulate these goals. 

According to page 401 of (Millington & Funge, 2009), goal-oriented behavior is used 

in “The Sims”. In this game, there are usually less than ten characters active at the 

same time. Each of them has personal needs, called motives, such as hunger or 

hygiene. There is a value for every motive, which is called insistence. This insistence 

value determines how much the motive should influence the behavior. Each Sim tries 

to satisfy his or her needs with the available actions, for example cooking. Individual 

Sims can also be told to do a specific action. These actions are offered by the 

fitments of their house, which can be bought for the money the Sims earn. 

A short example: A character has the motives “hunger” and “sleep”. “Hunger” has the 

highest insistence. Therefore, an action is to be found which satisfies the hunger 

best. The telephone offers the action “order pizza” what will lower the insistence of 

“hunger” by 0.5, and the boiling plate offers “cook spaghetti”, which will lower the 

insistence by 0.6. The character decides to cook himself because of the action’s 

effect. Note that this simple approach takes neither the delivery time of the pizza or 

the cooking time nor the side effects such as money into account. Utility systems 

are made for these somewhat more complicated decisions. 

One implementation can allow goals to be fully satisfied. Another might just set the 

goal’s insistence to zero. The availability of actions may also vary. Some actions may 

be available anytime and others may depend on the state of the game. Actions can 

be “consumed” after doing them and have to be created again, or they can persist 

permanently to be done by the same character again or by another. Often a series of 

actions is required until the effect is applied. For instance, a character might need to 

cook, serve the meal, and eat in order to satisfy his hunger. Goal-oriented action 

planning can make such decisions. 
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Goal-oriented behavior in general has the disadvantage that all available actions 

have to be compared which diminishes the advantage of being able to consider a 

large number of options for a single decision. 

3.4.1. Utility Systems 

The word “utility” in this context is derived from the domain of economics theory. It 

is part of Utilitarianism based on the ideas of Jeremy Bentham and John Stuart Mill. It 

is a value for how good an action or a situation is for an entire society or just an 

individual. 

Discontentment describes how much all goals of a character are fulfilled. It may be 

just the sum of all insistencies or it may sum their squares or even higher potencies, 

or it might be squared after summing up. Millington and Funge (2009) say on page 

406, “From our experimentation, squaring the goal value is sufficient.” In the 

following example, it becomes clear that squaring the insistence of each goal and 

then summing up is meant. 

Utility systems are used to calculate the utility of actions. The utility value is not 

restricted to the insistence values of the actions. Instead, it can include side effects 

and time issues. If several actions share the highest utility, the decision can be made 

randomly. 

Side effects can be money costs, consumed energy of any kind, ammunition, or an 

effect on other goals, for example. Each side effect needs a conversion into a utility 

value. This conversion may be multiplying with a factor or even a special function. 

Different kinds of times and durations may be considered in the utility functions. 

These times can be for instance: The time to carry out the particular action, the time 

for the whole chain of actions, and the time for the character to come to the action’s 

location. Some times can be approximated. For example, the walk time can be 

calculated out of a straight-line from the character to the action. The utility function 

may also consider how the goals change while the character walks to do the action. 

The overall time for the action can be calculated into the utility function for 

something like utility per second, or the utility can be decreased for each second the 

entire action chain takes. According to page 409 of (Millington & Funge, 2009), the 

overall time can also be incorporated into the discontentment, or a character can 

simply “[…] prefer actions that are short over those that are long, with all other 

things being equal.” 

As said on page 408 of (Millington & Funge, 2009), the algorithm is “[…]        in 

time, where n is the number of goals, and m is the number of actions […].” 

Therefore, the utility calculation of each action should be kept as simple as possible. 

Based on the experience with Cosmonautica, the exact utility values do not 

necessarily have a meaning. They are just used to compare actions in order to 

choose the best. 

3.4.2. Goal-Oriented Action Planning 

The previous parts of goal-oriented behavior aim for finding a single best action for 

a particular character. As the name says, goal-oriented action planning aims for 
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planning actions meaning that this technique is made to find the best sequence of 

actions for a character. 

The simple approach in finding a sequence of actions is to try all possible 

combinations of actions until the best is found. As said in (Millington & Funge, 

2009) on page 413, such an algorithm would be         in time with k being the 

number of steps, also called the planning depth. “N” is still the number of goals and 

“m” is the number of actions. Such a bad performance characteristic is usually not 

acceptable. Therefore, three algorithms for speeding-up the process with heuristics 

are mentioned in (Millington & Funge, 2009): depth-first search (page 415), A* (page 

418) and IDA* (also page 418). 

The structure resulting from combining all actions is a rooted directed tree with 

game states as nodes and actions as edges. The current game state is the root 

node. A* algorithms can base the heuristic function on the action’s effect on the 

current motive to find a fast way through the tree. When a game state is found 

where the current need is satisfied, the algorithm has found most likely at least a 

good solution. If such a solution is found, possible remaining planning steps may be 

omitted. Instead of searching for a satisfied need, the algorithm can also search the 

tree for the lowest overall discontentment at the last node or the accumulated 

highest utility value. 

As GOAP tries to simulate the game based on the current game state and the 

considered actions, it will need some sort of world representation, which includes at 

least the character and its environment with the actions. Depending on the game, 

this can require a lot of memory. As (Millington & Funge, 2009) states on page 413 

and 414, it is not necessary to store the entire world’s information for each 

character. Instead, storing a list of differences to the current state is sufficient. 

Although goal-oriented behavior is not too easy to understand and implement, it is 

used in several games. According to (Champandard, Special Report: Goal-Oriented 

Action Planning, 2008), it is used in the “No One Lives Forever”, “S.T.A.L.K.E.R.”, and 

“F.E.A.R.” series as a few examples. 

On page 418 of (Millington & Funge, 2009), it is recommended to use depth-first for 

the search for the overall discontentment and A* for the search for the best plan for 

a particular motive. 

3.4.3. Smelly Goal-Oriented Behavior 

This quite simple approach was used in “The Sims” (cf. (Millington & Funge, 2009), 

p. 426). Here, motives are represented by smells. Available actions produce a smell 

for the motives they affect. These smells are simulated like fogs. They cannot go 

through walls but spread around corners. Therefore, a part of the path finding is 

transferred to the action provider making the path finding of the characters slightly 

faster. The intensity of the smell can reduce over its travel distance. Then, the 

characters seek the smell source with the highest intensity at their current position. 

This approach leaves enough possibilities for value tweaking. For example, the 

emitted smell intensity can depend on the effect of the action. How fast the smell 

faints can be determined linear or quadratic with the distance. A threshold for smell 
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perception might be necessary to prevent characters from walking through the 

whole level. The diffusion of the smell simulated quite easily on a field-based level. 

Each field will need an intensity value for each motive. 

3.5. Rule-Based Systems 

Rule-based systems are a well-known technique for artificial intelligences. According 

to page 427 of (Millington & Funge, 2009), “They have been used off and on in 

games for at least 15 years, despite having a reputation for being inefficient and 

difficult to implement.” Rule-based systems allow the reasoning of characters about 

the game world in contrast to the other considered techniques. 

A rule in this context is made of a condition, the “if” part (also called “pattern”), and 

an action, which represents the “then” part. If the condition is met, the rule is 

triggered. Only a triggered rule can be fired. If it is fired, its action is finally 

executed. As said on page 428 of (Millington & Funge, 2009), “Many rule-based 

systems also add a third component: an arbiter that gets to decide which triggered 

rule gets to fire.” 

Rules need a database for their condition checks. The data within the conditions is 

structured equally to the data in the database. Conditions can combine data from 

the database with Boolean operators. A single datum in the database contains an 

identifier and a content. The content can be a list of datum objects or a single value. 

Wild cards are needed for rules that check if any character has a specific property. 

Millington and Funge (2009) suggest on page 441 and 442 the following arbitration 

strategies: 

 First applicable: rules are in a fixed order. The triggered first rule in the list 

gets to fire. 

 Least recently used: rules are stored in a data structure for example a linked 

list. The fired rule is removed from its position and added to the end of the 

list. 

 Most specific conditions: the rule with the highest number of matched 

clauses gets to fire. This gives highly specific rules a better chance to be 

fired. 

 Dynamic priority arbitration: the priority of each rule can be changed at run-

time to fit e.g. the motives of a character. This is the most flexible but it also 

needs the most time for its calculation. 

Every possible exception to the normal behavior has to be caught or may lead to a 

“brain failure” of the character. This can be done by adding more general rules. To 

find all possible exceptions can be very difficult and time-consuming, rule-based 

systems are therefore quite prone to errors. 

3.5.1. Rete 

Rete is an algorithm for matching rules against a database. It is the standard of the 

artificial intelligence industry. Faster algorithms are available but may be patented. 

According to page 446 of (Millington & Funge, 2009), “Most commercial expert 
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systems are based on Rete, and some of the more complex rule-based systems 

we’ve seen in games use the Rete matching algorithm.” 

Rete is not only the name of the algorithm but also the name of its data structure. 

This data structure is a directed acyclic graph. “Each node in the graph represents a 

single pattern in one or more rules. Each path though the graph represents the 

complete set of patterns for one rule. At each node we also store a complete list of 

all the facts in the database that match that pattern.” (Millington & Funge, 2009, p. 

446) 

There are three types of nodes in a Rete graph: 

 Pattern nodes: these nodes represent individual clauses in a rule. 

 Join nodes: these nodes work like a Boolean “and” operator. They combine 

the results of several pattern nodes. They can also work like “xor” or “or”. 

 Rule nodes: these nodes can be fired. 

Due to this structure, Rete shares patterns between rules and therefore “[…] doesn’t 

duplicate matching effort” (Millington & Funge, 2009, p. 447). As said on page 455 

of (Millington & Funge, 2009), the high memory usage of Rete gives the 

performance advantage over the simple rule-based system. However, the rule sets 

can grow too large, even for Rete. Rule sets can be then divided into rule groups. 

Those rule groups can be turned on and off if needed. 

3.5.2. Expert Systems 

A variant of the rule-based systems, the expert systems, were extremely popular 

several years ago, and many of them are still in use. “Expert system” is the name of 

an application, which combines an algorithm, usually a rule-based system’s 

algorithm, with the knowledge of an expert. Therefore, expert systems are artificial 

intelligences performing the job of an expert. (cf. Millington & Funge, 2009, p. 457) 

An expert system can keep track of every datum modified in the database by any 

rule. This information can be used for debugging, as an example.  

3.6. Behavior Trees 

Behavior trees have become increasingly popular within the last few years. Not only 

big game studios such as Bungie (Halo) use them but also smaller independent 

teams like Klei Entertainment (Don’t Starve). As said on page 334 of (Millington & 

Funge, 2009): 

They are a synthesis of a number of techniques that have been around in AI 

for a while: Hierarchical State Machines, Scheduling, Planning, and Action 

Execution. Their strength comes from their ability to interleave these 

concerns in a way that is easy to understand and easy for non-programmers 

to create. 

These advantages can be improved even further by graphical tools. The behavior 

trees from the domain of artificial intelligence have nothing to do with the behavior 

trees from requirements engineering. 
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Although sharing the same structure with decision trees, behavior trees are different 

in many ways. “Behavior trees have a lot in common with Hierarchical State Machines 

[…]” (Millington & Funge, 2009, p. 334), probably more than with decision trees. 

Decision trees are directed acyclic graphs made of only two types of nodes: 

decisions and actions. Decisions represent a question such as “Is the enemy visible?” 

and their answers are represented by their connected edges. The node at the fitting 

answer is checked next. If it is an action node, the decision-making is finished and 

this action node is executed (cf. chapter 5.2). 

 

Figure 7: Behavior tree evaluation 

Source: AiGameDev.com, Behavior Trees for Next-Gen AI (Slide 41), 

http://files.aigamedev.com/insiders/BehaviorTrees_Slides.ppt 

Behavior trees are also directed acyclic graphs. As all graphs, they are made of 

nodes and edges. Nodes know only their child nodes. This leads in combination with 

being a rooted tree to the hierarchical structure of the behavior trees. All nodes 

share the same interface, making it easy to exchange nodes, which in turn is the 

reason for their flexibility. A behavior tree can be started very simple as a 

placeholder and easily extended later on with working states in between. 
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Behavior trees are evaluated from the root every time. In contrast to decision trees, 

they are not simply traversed from the top to one leaf node. Instead, each node tries 

to run through all of its child nodes. The child nodes themselves also try to run 

through all of their children. Nodes report their evaluation results back to their 

parent nodes. The parents themselves base their evaluation on the child’s result. 

The behavior tree can be designed in such a way that the root node’s result 

indicates if the behavior tree found a behavior for the situation, in which its 

controlled object currently is. 

Millington and Funge (2009) suggest the following behavior tree node types: 

 Leaf nodes: These nodes have no child nodes. They are at the end of the 

behavior tree. They can also be implemented in script code for easier 

modification. 

o Action: These nodes alter the state of the game or game object. 

o Condition: These nodes check a fact in the game. 

 Composite nodes: These nodes have multiple child nodes. They base their 

own evaluation on the return values of their children. 

o Sequence: These nodes try to evaluate their child nodes until one 

returns something else than “successful”. 

o Selector: These nodes try to evaluate their child nodes until one 

returns something else than “failure”. 

o Parallel: These nodes try to evaluate their child nodes until a specific 

number of “successful” or “failure” is returned. In contrast to the other 

composite nodes, parallel nodes do not commence their evaluation at 

the last “running” node. 

 Decorators: These nodes have only one child node. They change the way the 

child is evaluated. Many different types of decorators are imaginable. They 

can for example change the child’s return value or act as breakpoint. 

As said on page 340 of (Millington & Funge, 2009), “Behavior trees implement a very 

simple form of planning […]. Selectors allow the character to try things, and fall 

back to other behaviors if they fail.” Even this basic planning can make characters 

more believable. Behavior trees tend to do nothing if they fail instead of running 

into errors or carrying them into future evaluations. Some parts of behavior trees 

can be chosen randomly in order to improve the diversity of the behaviors. 

3.7. Comparison 

Now, that several decision-making techniques have been explained, they have to be 

compared in order to find the best for Cosmonautica. As a reminder, the technique 

has to support the behavior of characters like in “The Sims”. 

Here is a rule of thumb for how to think when using a technique: 

 State Machines: What is the character doing now and what will he be doing 

next? 

 Fuzzy Logic / Markov Systems: In which states and with which degree of 

membership is the character? 
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 Goal-Oriented Behavior: What is the best action for the situation in which the 

character is right now? What is the best chain of actions for the character to 

achieve a goal? 

 Rule-Based Systems: In which situation should a character do what? 

 Behavior Trees: What should the character do now? 

Therefore, fuzzy logic is not fitting as several states at once are probably not 

required and the non-crisp logic might make the behavior unclear to the players. 

When for example the best action has to be found, all techniques except goal-

oriented behavior and rule-based systems will grow too large to stay maintainable. 

This is a collection of technique characteristics: 

 Simplicity: how easy the technique is to understand and to implement. The 

creation of a behavior is included as well. 

 Separation of the work of game designers and programmers: how good 

the game designers can focus on writing behaviors and how good the 

programmers can focus on the systems without interfering each other. 

 Flexibility: how easy an existing behavior can be modified and extended. 

How easy it is to modify the behavior system in order to enable behaviors 

that are more detailed. 

 Behavior Quality: how detailed a behavior can be. The effort making these 

behaviors is not included in this. 

 Efficiency: how efficient a decision can be made by the technique. Must all 

possibilities be considered or just the most likely ones? Can an option be 

checked for validity and can it be modified at once? 

The following table contains excerpts from the summary tables in (Vassos, 2013) as 

well as some possibly subjective anticipations and experiences. A ‘+’ represents 

remarkably more, ‘-‘ less, and ‘0’ the average of a characteristic. 

 State 

Machines 

Fuzzy Logic / 

Markov 

Systems 

Goal-

Oriented 

Behavior 

Rule-Based 

Systems 

Behavior 

Trees 

Simplicity + - 0 - + 

Separation of 

Game Design 

and 

Programming 

+ 0 0 + + 

Flexibility - 0 0 0 + 

Behavior 

Quality 

- 0 0 + + 

Efficiency + - - + 0 

Note Very 

simple 

The only non-

crisp logic here 

Great for 

planning 

Limits not 

reached yet 

High 

flexibility 

Table 2: Comparison of Decision-Making Techniques 

However, which characteristics are important for Cosmonautica? As the speed of 

development is crucial at Chasing Carrots, simplicity is necessary for the technique. 

The separation of game design and programming is not too important right now but 

may become important in the future. This is because scripting is not yet included 



State of the Art  26 

  

and the game designers are mostly working on the graphical user interface. 

Flexibility is very important because Cosmonautica is not fully planned now and will 

most likely change often. As the behavior of the crewmembers is a main asset of 

Cosmonautica, the chosen technique has to support a fairly advanced behavior. 

Therefore, the possible behavior quality of the technique must be over a certain 

lower limit but does not need to simulate a real human being. Cosmonautica will be 

available for mobile devices. Therefore, the hardware requirements, especially the 

computation time have to be kept in view. However, having the artificial intelligence 

as a main feature gives it a decent amount of computation time, which nevertheless 

must not be overused. 

Putting it all together makes it clear, that behavior trees are basically the best 

technique for Cosmonautica. Only “basically” because they will cause trouble for 

example when choosing the best action to satisfy a need. These possible actions are 

added, modified, or removed while playing. Behavior trees could be changed at run-

time to support this, causing them to grow very large. However, such behavior trees 

will be difficult to maintain and debug.  

Finding the best possible option out of a pool of options can be done using the 

algorithm from the utility systems. As it considers all options, it is not efficient. 

However, the number of options is limited and the calculation of their utility values 

will stay simple. Therefore, the computation time will probably stay within its limits. 

These “choose the best option”-actions will be implemented as action nodes within 

the behavior trees. 
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4. Behavior Trees in Detail 

As described in the previous chapter, behavior trees are a great technique for 

behavior control. Although simple, they are powerful and flexible. Behavior trees 

really shine when used with a graphical modeling tool. 

Behavior trees are gaining more and more popularity in game development. Several 

sources are available, the best ones being chapter 5.4 of the book “Artificial 

Intelligence for Games” by Millington and Funge and several articles on 

AiGameDev.com by Alex J. Champandard. 

This part is about how behavior trees work and what their precise parts are. Some of 

the elements described here may be insufficient or inapplicable for other programs. 

Luckily, the entire behavior tree technique can be extended and modified very 

simply. The number of possible node types and decorators is literally infinite. 

Several behavior tree implementations are available. To keep it simple, only the 

parts that are absolutely necessary or have proved useful in Cosmonautica are 

described in depth. 

4.1. Tree Structure 

Behavior trees can be described by the mathematical graph theory. A mathematical 

graph is an ordered pair of nodes, also known as vertices and edges. As stated in 

(Millington & Funge, 2009) on page 306, behavior trees are directed acyclic graphs 

(DAGs). It is directed because only the parent nodes call their child nodes’ 

evaluation method. Acyclic means that it has no cycle but gains a cycle if a single 

edge is added to it. 

To be more exact, behavior trees are rooted and directed trees. The root is a normal 

node but it adds a hierarchy to the tree. The hierarchy level of each node is 

described by the number of edges between it and the root. At an edge, the node 

that is higher in the hierarchy is the parent of the other node, the child node. 

Connections between nodes of the same level of hierarchy are not possible in the 

standard behavior trees. Nevertheless, any connection can be achieved by a special 

node implementation allowing them to manipulate a user-defined node. 

4.2. Node States 

Each node sets its own state every time it is evaluated, then it returns this state to 

its parent node. Which states are possible and useful? Alex J. Champandard says in 

his talk about behavior trees (Champandard, Understanding the Second Generation 

of Behavior Trees, 2012) that he tried many possibilities but these states are the 

best: Invalid, Success, Failure, Running, and Aborted. During the development of 

Cosmonautica, no situation occurred that required different states. In fact, the 

whole behavior tree system of Chasing Carrots is based heavily on the behavior tree 

starter kit from AiGameDev.com
5

. 

The node states are: 

                                           

5

 http://aigamedev.com/ultimate/release/behavior-tree-starter-kit-source-release/ 

http://aigamedev.com/ultimate/release/behavior-tree-starter-kit-source-release/
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 Invalid: The state invalid is used for nodes, which have never been initialized. 

This state is set in the constructor of the base node class. 

 Successful: Success is set when a node evaluated successfully. For example, a 

node that teleports the player character to another place could use this state to 

show that the player has arrived. 

 Failure: Failure is the opposite. Using the previous example, this state could be 

set if the teleport fails because the player lacks the resources. 

 Running: The running state is a bit special as it may persist through several 

evaluations of the node. In the teleport example, this state would show that the 

teleport takes time to open a portal. Once the portal is opened, the teleport node 

would set its state to “successful”. 

 Aborted: Another node can cause the teleport node to reset. Then, the “aborted” 

state would be set. This might happen when the character received damage while 

opening the portal. 

There are two events reacting on the states of a node. The on-initialize-event is 

triggered before the evaluation but only if the node's state is not "running". The on-

terminate-event is triggered after the evaluation but before returning its state, only 

if it is not "running". Both events may execute custom code. In the teleport example, 

the on-initialize-event could start an animation, the node evaluation would check if 

the teleport preparation is finished, and the on-terminate-event would set the 

caster’s new position if successful. 

4.3. Base Nodes 

Base nodes are the nodes, which must be included in every behavior tree system. 

Special nodes needed for a particular game can be derived from these nodes. 

Different implementations have different node types. One implementation is 

RAIN{Indie}
6

, an artificial intelligence engine for Unity3D. It offers the following node 

types: Action, Condition, Decorator, Iterator, Parallel, Random, Selector, Sequence, 

Timer, and Yield
7

. 

Iterator, timer, and yield nodes do not need to be base nodes because they can be 

implemented as decorators. 

The condition node evaluates its child node only if a pre-defined condition is met. It 

is quite convenient for the design of behavior trees but its implementation can be 

difficult in particular when the performance is really important. An overridden 

evaluation method with the build-in condition will do the job, too. It requires the 

inheritance of a base node, what will affect the performance much less than a 

scripted condition. The scopes of game designers and programmers will also 

overlap at this point. 
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 http://rivaltheory.com/rainindie/ 

7

 

http://support.rivaltheory.com/rainindie/api/class_r_a_i_n_1_1_behavior_trees_1_1_b_t_nod

e.html 

http://rivaltheory.com/rainindie/
http://support.rivaltheory.com/rainindie/api/class_r_a_i_n_1_1_behavior_trees_1_1_b_t_node.html
http://support.rivaltheory.com/rainindie/api/class_r_a_i_n_1_1_behavior_trees_1_1_b_t_node.html
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Another version of the condition node evaluates its child node only if another child 

node returned successfully. This is how it works in some other behavior tree 

systems, for example the system of “Don’t starve”
8

. In this game, the behavior trees 

are used for the control of monsters and animals. Its entire artificial intelligence 

system is implemented in Lua. The condition check of such a condition node could 

be simply a part of the first child node instead of being a separate node. This will 

speed up the computation but will decrease the modularity. The version of Don’t 

Starve has also the advantage that the action will not run into “exceptions” and leave 

its controlled object in a broken state. 

Another variant of the condition node is implemented in RAIN. This condition node 

is almost like an action node except it just reads the game data and instead of 

modifying it. Its condition is a script string that must be parsed. An approach with 

better performance is when conditions can by assembled from a pre-defined set of 

operators and some parts of the game data. This way, it can be used by scripting 

languages without slowing down the game like a fully scripted condition. 

The behavior tree system of Don’t Starve has a special node, the priority node. It 

evaluates its child nodes in the order of their priority values. To achieve the same 

effect, the behavior tree designer can just switch the order of the child nodes since 

the child index is an implicit priority value. Changing the indices at run-time will 

cause at least swapping costs, but may also lead to inconsistency. In contrast, 

priority nodes have the advantage that their stored priorities can be changed easily 

at run-time without affecting anything else. Another special node is the event node. 

It evaluates its child nodes as soon as an event occurs. This event is not limited to 

the time the behavior tree is evaluated. That is why event nodes can be 

unpredictable. 

Several behavior tree implementations contain random selectors and random 

sequences. Random decisions in general improve the diversity but may also make 

debugging more difficult, especially if the random decision is the base of more 

detailed decisions. Those random decisions can be used when a decision does not 

matter to the game logic but to the player. For example, a bot choosing a random 

taunt animation can be modeled with a random selector. The random sequence is 

used when all actions have to be done but their order does not matter. For example, 

a smoking NPC could choose randomly whether to get the cigarettes or the lighter 

first. 

The behavior tree starter kit of AiGameDev.com is limited to the nodes that are 

common among all examined systems except for the active selector node. This 

active selector is a usual selector but terminates the previously running node if 

another node is running or successful in this evaluation step. 

As used in the Chasing Carrots implementation, the absolutely necessary nodes are:  

                                           

8

 http://www.dontstarvegame.com/ 
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 Action nodes: the leaves of the behavior tree. They really manipulate or control 

the game objects. In this implementation, they also act as condition nodes, 

meaning that they can run checks on game data. 

 Sequence nodes: evaluate their children until one returns something else than 

successful. 

 Selector nodes: evaluate their children until one returns something else than 

failure, contrary to the sequence node. 

 Parallel nodes: needed when several nodes are running at the same time. 

Depending on the implementation, the parallel node may evaluate one up to all 

of its child nodes. Its return value depends on the number of failed and 

successful children. 

 Decorator nodes: intended to modify the way its single child node is evaluated. 

The details follow in the next chapter. 

4.4. Decorators 

Millington and Funge (2009) explain the origin of the decorators on page 345:  

The name ‘decorator’ is taken from object-oriented software engineering. The 

decorator pattern refers to a class that wraps another class, modifying its 

behavior. If the decorator has the same interface as the class it wraps, then 

the rest of the software doesn’t need to know if it is dealing with the original 

class or the decorator. 

Decorator nodes behave just like this, even in behavior trees. 

Decorators are a kind of a behavior tree node. They work only with a single child 

node. They modify the way their child is evaluated. This can be the number of times 

the child is evaluated or how its return value is modified. New decorators can be 

developed just by inheriting the decorator base class and overriding its evaluation 

method as needed. The list of existing decorators is quite long and the list of 

possible decorators is practically infinite. 

The behavior tree system of Chasing Carrots offers the following decorator nodes: 

 Repeat: evaluates its child node a set number of times each time the decorator is 

evaluated. Note that this decorator might cause trouble if the child needs too 

much performance especially since the child node might be initialized and 

terminated several times. This number might be changed by another node of the 

behavior tree. 

 Limit runs: every time this decorator is evaluated it decrements a counter. Then 

it evaluates its child if the counter is zero or greater. The counter must be reset 

by another node of the behavior tree. 

 Return value modifier: changes the return value of its child node before giving 

back the changed value. There are several possibilities for the value changing 

itself. 

 Breakpoint: breaks the execution of the code like a usual breakpoint for 

debugging.  

 Logger: writes the return value of its child node each time it is evaluated into a 

log. Depending on the game, this log might be just a C++ console window or a 
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channel of a profiling tool such as Deja Insight
9

. This decorator proved to be 

almost worthless because usually the entire tree is to be viewed, not only single 

nodes. A separate recursive logging function is much better suited for this. See 

the chapter “Debugging” for the details. If every node has a logger as parent, the 

resulting log will be in wrong order. The first logging entry will be the last 

evaluated leaf node and the last entry will be the root node. 

Another interesting decorator is described in (Millington & Funge, 2009) on page 

348 und 349. It is shown how resources can be guarded by this special decorator. It 

works like a semaphore from the domain of multi-threading. For example, it can be 

used to ensure that only one animation at a time is running on a character. This 

decorator is currently not necessary for Cosmonautica because the animations are 

not controlled by behavior trees. Therefore, the semaphore is not implemented. 

4.5. Policies 

Policies offer variations of nodes without having to write a new class by deriving and 

overriding. This matters because every derived class adds performance costs 

through the run-time type information system. Policies are only used for quite 

common variations like how many failing child nodes will cause the parallel node to 

fail, too. They are an option for all variations that have only a limited number of 

meaningful possibilities. Policies are usually implemented as an enumeration of 

variations or a number of occurrences that are given to the node via its constructor. 

They do not need to be modified at run-time since the policies are part of the 

behavior tree design. 

The Chasing Carrots implementation offers policies for several nodes and 

decorators: 

 Parallel node: The state of a parallel node depends on the numbers of successful 

and failed child nodes. There can be different policies for the success and failure 

requirements of a single parallel node. The behavior tree starter kit has an 

enumeration for the policies require all and require one. Integral values are very 

similar in the implementation but offer more possibilities for the designers. By 

doing so, the behavior tree designer must take care of these values to assure 

that they work with the current number of child nodes of the parallel node. The 

work on Cosmonautica shows that the “all or one” enumeration is sufficient. 

 Return value modifier: Always invalid, always running, always failing, always 

successful, and switch failure with successful. Modifying the aborted state seems 

useless. 

 Breakpoint: Break always, break on invalid, break on running, break on 

successful, break on failed. The implementation must ensure that breakpoints 

are not included in the release version of the program. 

4.6. Modeling 

The notation for AI behavior trees should not be confused with the notation for 

requirement behavior trees. That notation is completely different and serves other 
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purposes. The deficient unified notation in the AI domain is most likely caused by 

the lacking interest in documentation of game developers in general. 

Alex J. Champandard suggests in his talk about behavior trees (Champandard, 

Behavior Trees for Next-Gen AI, 2008) a notation for modeling which is inspired by 

an HTN notation. The symbol for sequences is a rectangle. There is an arrow 

through the edges between the sequence node and its child nodes. The symbol for 

selectors is a circle with a dashed borderline and a question mark in its middle. 

Decorators are shown as a rhombus. Leaf nodes are white circles, whereas actions 

and conditions have different fill colors if they are modeled explicitly. Champandard 

has a node for lookup dependencies, which is also a rhombus, but gray filled and 

contains an ‘L’. His parallel node is a rounded rectangle filled with gray and 

containing a ‘P’. 

 

Figure 8: Behavior tree notation according to Champandard 

In “Dynamic Difficulty Adjustment Using Behavior Trees” (Kenneth, Olsen, & Phan, 

2011) another notation is used. It bases on the notation by Champandard (see page 

11) but includes more node types. They use a triangle for the root, but their root is 

like a decorator without any action. It is just a marker for the beginning of the 

behavior tree. The action node is the same as the white circle in Champandard’s 

notation. Here, the selector is a rectangle having its smaller sides rounded. The 

probability selector has additional probabilities at the edges to its child nodes. The 

sequence node is not changed. It is still a rectangle. A pentagon indicates the 

condition node. Like the action node, it is meant to be a leaf node. In contrast to the 

action node, it has a condition instead of an action. The decorator node is still a 

rhombus. The link node is also a rhombus but with an ‘L’ in its middle. This node 

connects different behavior trees introducing more modularity and reusability (see 

page 13). 

 

Figure 9: Behavior tree notation according to Sejrsgaard-Jacobsen, Olsen, and Phan 

Some parts of this notation are not necessary. For example, the root does not have a 

purpose despite of being an optical marker. It should not be included into the final 

working behavior tree. The root might be necessary for their behavior tree system, 
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but such implementation specific details should not be part of a model. The 

condition and action nodes do not need to be separate nodes, as shown in 

Cosmonautica. 

The last notation mentioned here is the notation of (Millington & Funge, 2009). Due 

to the popularity of this book, it is probably the most used behavior tree notation. 

This notation is never explicitly explained, it is only shown in several models. If the 

models on the pages 336, 345, and 347 are put together, the following notation can 

be found: 

 

Figure 10: Behavior tree notation according to Millington and Funge 

This notation is similar to the notation by Champandard. Strangely, the random 

sequence is a circle instead of a rectangle like the normal sequence. This is most 

likely a mistake as it is shown only in figure 5.28. 
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5. Artificial Intelligence in Cosmonautica 

5.1. Workflow 

5.1.1. Text-Based Notation 

Every notation described in the previous chapter has the same problem: their 

symbols are exchangeable. This means that the rhombus of the decorator can be 

used for any other node type as well. This is quite basic for symbols as they stand 

for something else than they are. However, having a relation between the symbol’s 

appearance and the thing it represents would help for remembering the notation. 

Furthermore, most symbols are not self-explanatory which means that a person who 

does not know the notation will not understand it. However, those who know such a 

notation can understand a model really quickly. It seems like the contact with people 

who do not know these notations is much more probable. 

These are the main reasons why Chasing Carrots uses a completely different 

approach. Since symbols have no advantage, a text-based notation will be self-

explanatory at least. This is the notation for one node: 

Node type (policies): Description or identifier 

Example:  

Parallel (Require all for success, require one for failure): Update crewmember 

If there are no policies for this node, they can be omitted including the brackets. 

Example:  

Action: Update morale  

Information about initialization and termination of nodes can be added. This is how 

it can look like:  

Node type (policies): Description or identifier {Initialize: init code; Terminate: term 

code} 

The node type is the most important information about a node. When this is the first 

part in the notation, the type can be recognized almost as fast as a symbol. The 

policies are the next because they give a more detailed description of the node. The 

third part is intended to tell what the purpose of the node is. If the node’s identifier 

gives enough information, it can be used as a description, too. The description part 

is optional because the function of nodes like sequences or selectors is clear. 

Nevertheless, a description at this point can clarify the purpose of the node and its 

children. For example a description as in “Sequence: Forge sword” is like a comment 

in source code, it clarifies the purpose of this part on a higher level of abstraction. 

One of the major advantages of this approach is that it is not limited to the pre-

defined node types. Anyone can add more of them, making it flexible enough to 

deal with all the possible nodes, especially decorators. This notation was created out 

of the need to talk about a behavior with people who were not involved in the 

behavior trees. As mentioned in the introduction, working code is more important 
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than documentation at Chasing Carrots. So the modeling itself and its 

representation in graphs must not take too much time. 

5.1.2. Modeling Tool 

Another great advantage of the text-based approach over the symbol notations is 

that the modeling of behavior trees is much faster and easier. No special tool is 

needed. Instead, a simple text editor can be enough. “TreeSheets”
10

 is used for the 

modeling at Chasing Carrots. It is a tool for any tree-like data organization. It is 

intended as a “replacement for spreadsheets, mind mappers, outliners, personal 

information managers, text editors and small databases” (Oortmerssen). The users 

can view their entered information in different styles such as a spreadsheet-like and 

a tree view. However, it is not intended for the modeling of behavior trees as it does 

not support the modelers with e.g. node templates, but it supports the necessary 

tree structure and is a fast writing tool. 

 

Figure 11: Tree view of a behavior tree 

This tree view becomes overloaded very quickly, but it is more understandable for 

smaller models. 
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Figure 12: Spreadsheet-like view of a behavior tree 

This spreadsheet-like view is quite convenient for editing the behavior tree. 

TreeSheets is still more like a workaround for behavior tree modeling. In the future, 

Chasing Carrots may develop its own graphical modeling tool, which might also 

generate code, most likely Lua code. 
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5.2. Behavior Tree System 

5.2.1. Implementation 

The structure of behavior trees can be represented with container classes. As the 

number of child nodes does not usually change at run-time, a vector has the best 

performance characteristics. Every node has a vector of pointers to its child nodes. 

Exceptions are decorators, which have only a single child node. Nodes do not need 

to know their parent nodes. This is how the directed graph is implemented. 

Sometimes binary trees are used to increase the performance of the behavior trees. 

Those binary trees can only have up to two child nodes. This limitation makes it 

unnecessary to use container classes. This way, a lot of overhead e.g. from iterators 

and function calls is avoided. Often, more than two child nodes are required. 

Therefore, a binary tree will tend to have more nodes in total than a usual tree. The 

advantages and disadvantages of using binary trees have to be weighed carefully, 

especially as they cause more modeling effort. 

Amongst other features, the behavior tree starter kit by AiGameDev.com contains an 

example of a memory-optimized variant. With this, only one instance of each single 

node class is needed for the entire program. Instead of assembling the behavior 

trees out of the nodes classes, so-called tasks are taken. These tasks are lightweight 

versions of the nodes. Each of them has a state for itself but may share other data 

e.g. a blackboard. 

Behavior trees can be evaluated using multi-tasking. For example, sub-trees may be 

evaluated in separate threads what will require the previously mentioned semaphore 

decorators. 

There are different ways how behavior tree nodes can get their data from the 

program. One approach is to use a blackboard architecture. Another one is to give 

pointers to game objects into the node constructors and let the special node 

implementations collect their needed data. This approach needs additional 

treatment in the memory-optimized version. 

Behavior trees make heavy use of inheritance to enforce a common interface for all 

nodes. Therefore, all nodes are derived from an abstract base node class. The action 

node class is directly derived from this base class and has an overridden evaluation 

method. It is also possible for another action implementation to derive from the 

base node class and execute a callback method on a given object. Decorators are 

also derived from the base node class. They extend it by its child node, which is 

evaluated in the decorator evaluation method. Selector, sequence, and parallel 

nodes are derived from an abstract composite node, which in turn is derived from 

the base node. The composite node holds a list of the child nodes and does its 

management. The evaluation itself is implemented in the selector, sequence, and 

parallel node’s evaluation method. 
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Figure 13: Class diagram of the behavior tree system at Chasing Carrots 

5.2.2. Debugging 

Behavior trees have a major disadvantage for debugging: their call stacks show only 

the parent nodes of the current node and are therefore quite useless. Debugging 

behavior trees will be much more effective if the entire tree with all its nodes’ states 

can be seen in every frame. This is why Chasing Carrots has written a special 

debugging tool. It is fed with the data of the behavior tree nodes from the game via 

UDP. The data is sent after the entire behavior tree is evaluated. It stores for each 

behavior tree the states from the last three in-game days. However, this tool does 

not show whether a node has been accessed in the last evaluation or not. Older 

states may simply stay. Note that this tool is not a complete solution for all 

debugging problems. It is made to aid debugging, especially when wrong behaviors 

appear after a sequence of frames. Other games may require other information in 

such a tool. 
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Figure 14: Screenshot of the debugging tool for behavior trees 

The state string of the whole behavior tree is assembled recursively. The base node 

returns only its own state string. Each node needs a string for its description, e.g. 

“Action: Go to room”. The node state has to be converted into a string and added to 

the full string. The hierarchy can be shown through indentation. For this purpose, a 

tab-character is added for each level of hierarchy. 

 

Composite nodes add the state string of their nodes to their own state string. They 

call the getStateString()-method with their own level of hierarchy plus one. 

Decorators do the same, but only with their single child. 

After the full state string of the behavior tree has been assembled, it can be sent via 

UDP. It can be important, that this string may grow too large for a single UDP-

packet. 
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5.3. Crewmember Behavior 

The crewmembers are a main part of Cosmonautica. The players will watch them 

very often. Therefore, their behavior has to be fine grained enough to be convincing 

and entertaining. As a main part, the crewmembers in Cosmonautica are placed 

within a network of many other classes. Some of these classes already existed when 

the behaviors where added. Therefore, some behaviors had to be made fitting into 

the systems. Here is a simplified overview of the important classes for the 

behaviors: 

 Player: owns the crewmembers and the space ship. This class has the 

information in which situation the crew currently is. Such situations are for 

example on space station, or travelling. 

 SpaceShip: contains information about the overall state of the ship, e.g. 

cargo, shields whether it is in an orbit or travelling to a planet. It owns the 

TaskProviders for flight and fight. 

 RoomStructure: contains information about where which room is and where 

the elevators are. Rooms are placed within a two-dimensional grid. This grid 

has its X-coordinate going to the right and Y down just like the pixel-

coordinates on the screen. Those coordinates are equal to the indices of a 

two-dimensional array of room-slots. 

 Room: has a corridor included. Crewmembers can therefore walk horizontally 

from the front of the ship to its rear. If they want to go vertically, they need 

lift-tubes. Rooms offer activities to the crewmembers and they offer tasks to 

be done by crewmembers. Each room has only few activities and tasks. The 

cockpit for example offers the piloting-task. Like every other room, it also has 

the repair and clean tasks as well as bad sleeping and toilet activities. 

 Activity: modifies the change of the needs of the crewmembers while they do 

it. Activities may satisfy one need quite fast but may also increase other 

needs. Activities can be something like eating a snack, which satisfies the 

hunger a bit but increases the need for toilet. Activities are always available at 

a room as long as the room is operable. They are not consumed by doing 

them but they can be done by only a single crewmember at once. If more 

than one crewmember tries to do the same activity at the same time, the first 

starts doing it and all following crewmembers wait in a queue near the room. 

 Task: When crewmembers are working on tasks, they generate something 

useful for the player. This can be for example medic points enabling the “get 

healing” activity for hurt crewmembers. They have usually only one assigned 

activity. This activity makes the crewmember for example hungrier while 

repairing. 

 NeedSystem: belongs to a crewmember. It contains the information about 

which needs the crewmember has. Not everyone has every need. Instead, 

crewmembers have a chance to have some secondary needs such as 

entertainment or fitness. All crewmembers have needs like the needs for 

food, toilet, and sleep. The need system also keeps track of the current need 

and activity and provides information for the visual representation of the 

crewmembers in order to make them walk to the activities and start the doing 

animations. 
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 Need: has the information about how urgent it is. The need is equal to the 

goals from the goal-oriented behavior and its urgency value is similar to the 

insistence of these goals. It also defines, what happens if the need has a 

specific urgency level. For example, a strong need for food will lower the 

health of a crewmember. Each need can have a standard change over time. 

The hunger, for instance, increases on its own and the health will slowly 

regenerate if the crewmember is not too hurt. Needs contain two different 

urgency values. The first one is a volatile value indicating the current state of 

a need. If this value grows too big, the behavior system tries to satisfy the 

need. The second value is damped and based on the first value. It represents 

the state of the need over the last few game-days. This second value triggers 

the urgency effects and influences the morale of the crewmember. 

 TaskProvider: is a list of all possible tasks in the current situation. The 

current situation can be for example while travelling, on space station, or in 

space fight. 

 ActivityProvider: is a list of all possible activities in the current situation. 

 Skills: determine which tasks a crewmember can do. Each task has a required 

skill. Some skills like “gunning” are required for several different tasks. 

Although it is currently not used, tasks may require a minimum skill level. 

 

Figure 15: Information about a crewmember in the GUI 

The Crewmember class is the center of all the effort. It contains the information in 

which shift the crewmember should work. It also has a list of assigned tasks for 

every situation, like travelling or in a fight. This list can be edited by the players to 

modify the priority of these task types for a single crewmember or tasks can be 

removed from the task list to have them done by another crewmember. Every 

instance of the crewmember-class has its own need system. If a crewmember starts 

doing a task, he sets the associated activity on his need system. Crewmembers have 

a morale value, which they update by considering the need values in their need 
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system. When the morale becomes too low, the crewmember will be on strike and 

then refuse to work. Crewmembers improve their skill level while working on a task, 

which requires this particular skill. They also have a reference to the current task 

and activity provider. 

 

Figure 16: Task lists of a crewmember in the GUI 

The Crewmember-class owns its behavior tree nodes. It manages the entire behavior 

tree, which means that the construction, evaluation, and de-construction are done 

by the crewmember. The leaf nodes of the behavior tree need access to data and 

methods of the crewmember or his need system. Therefore, methods for checking 

and modifying are added to the crewmember and the need system. These methods 

perform a check on a member datum or modify it, and then return a Boolean 

representing the success of the action. Such methods can be relatively simple like 

the check if the crewmember should work now. They can also be quite complex like 

the method, that searches for the best activity for the current need of the 

crewmember. If that method finds an activity, it sets the current one to this activity 

and returns true. 
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5.3.1. Behavior Tree for Crewmembers 

 

Figure 17: Behavior Tree Model for Crewmembers 
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Here is how the behavior tree of the crewmembers works in detail. The entire 

evaluation of the behavior tree is successful if both the updating of the crewmember 

and the finding of the current activity are successful. A parallel node with the 

policies “all for success” and “one for failure” is used to get a behavior like a 

sequence that begins its evaluation always with its first child node. Updating the 

crewmember means that his or her morale is updated as well as all the needs in the 

need system, but only if the crewmember is active now. Crewmembers can be 

inactive when they die or leave the crew for another reason such as low morale. The 

crewmember-objects are not destroyed while playing. Instead, their data is 

overridden if they are exchanged or reset to inactive if they leave the crew. 

If the update part is successful, the behavior tree lets the crewmember choose the 

current activity for the current environment. As the crewmembers will be on the ship 

most of the time, this environment is checked first in the behavior tree. To ensure 

that this order of the environments is used every time the behavior tree is evaluated, 

a parallel node with the policies “one for success” and “all for failure” is used. It 

works mostly like a selector that begins its evaluation always with its first child 

node. 

The part of the behavior tree for the ship environment checks at first if the 

crewmember is on the ship right now. If not, the next environment is checked. If he 

or she is on the ship, the current need and activity are updated if necessary. They 

are updated at once for performance reasons because they share most of the 

condition checks. It is only necessary if the current need has never been urgent 

since the crewmember was assigned that need as his current need. This is important 

because crewmembers should completely satisfy an urgent need. Without this 

check, the crewmember would stop satisfying the previous urgent need as soon as it 

is not urgent anymore. If this check for urgency is successful, the current need and 

activity are updated. This is the process of finding the most important need, that 

can be satisfied and finding the best activity for it. Afterwards, the current task is 

reset if existing. It has to be reset here und set again later in the working-part of the 

behavior tree or this reset-node has to appear in multiple places within the tree. 

Finding out whether a crewmember should not work anymore is much more effort 

than always resetting and setting only when necessary. This “reset task if existing“ 

part is the child of a force successful-decorator because more update nodes can be 

added to the on ship updates. These new nodes should be independent from the 

success of the task reset. 

The same reason is there for the force successful decorator as parent of the entire 

on ship update part. Choosing the current activity and doing it should be done 

always, no matter if a need was urgent or not. If the current need was urgent, it 

must not change until it is satisfied but the activity might be changed. This is 

important because a crewmember might be very tired and therefore sleeping on the 

ground in a room. As soon as a bed is not occupied anymore, he should move to 

this very bed and sleep more efficient. 

If the current need was not urgent, it is checked if the crewmember should work. 

This depends on his assigned shifts, the alarm state of the crew and other modifiers 

such as being on strike. If he should work, his list of tasks is updated as well as the 
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current task and the assigned activity of this particular task is set as the current 

activity of the need system. If the crewmember should not work, he might have 

leisure time. Crewmembers on strike or working without anything to do are treated 

as if they had leisure time. Afterwards it is only checked if the crewmember has a 

current activity. He might not have an activity if none of his needs is beyond a 

certain threshold or if there is no useful activity available. In such cases, the 

crewmember would do anything, not even idling. Therefore, the “nothing to do” part 

is added. If the crewmember has no current activity, this part sets the current need 

to the favorite need and finds the best activity for it. 

 

Figure 18: Alarm on a space ship 

After the crewmember has been updated and found a current activity to do, he 

starts walking to that activity in case it has changed. The “go to room”-action just 

checks if the crewmember has arrived at the activity. It returns “running” while he is 

walking or standing in a queue. The walk speed depends on the urgency of the 

current need if it is not an activity of a task. The speed is also influenced by the 

crew’s alarm state and the weight the crewmember is carrying. After having reached 

the activity, the crewmember does his current activity or task. This means that the 

current activity modifies the current need values and the task generates e.g. science 

points. The “start walking if new activity” node returns only successful if the activity 

has changed and the crewmember started walking. If this return value is inverted, 

the “walk and do” parallel node fails what resets the “go and do” sequence. This is 

necessary to ensure that crewmembers walk always to the new activity before they 

do it. 
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Figure 19: All the information players get about their crewmembers on space 

stations 

Crewmembers who are not on the ship can only be on a space station, because 

ground missions are not yet implemented and any other environments are not 

planned. They are not visible on space stations, only their current activity’s name 

appears in the GUI. Therefore, the behavior for this environment can be much 

simpler than on the ship. The space station part of the behavior tree just checks if 

the crewmember is on a space station, chooses an activity, and then does this 

activity. Crewmembers have automatically leisure time on the space station as soon 

as the ship docks. Space stations have superior activities for all needs and cause no 

costs for the player. 

It should be noted that there is no distinction between travelling and fighting within 

the behavior tree. Both situations are handled in the “on ship” part. If the situation is 

changed, the crewmembers get a different task provider and a different activity 

provider assigned by the player-object. The search for the best activity and task can 

consider only the activities and tasks of the current providers. The task provider for 

travelling with the ship contains for example “cleaning”, whereas the task provider 

for space fights contains different gunner tasks for each turret, instead. 

5.3.2. Finding the Best Activity for Crewmembers 

How the search for the best activity fits into the behavior should have become clear 

by now. The search itself has not been explained, yet. This is what follows here. 

There are several reasons why the concrete search for the best activity is not done in 

the behavior tree but within a BT action node. The first reason is that activities are 

added by placing rooms and they are removed when the providing room is sold or 

destroyed. This would require adding nodes to the tree at run-time. If all of the 

approximately hundred rooms of a very big ship are placed, the behavior tree would 

then grow by at least each two hundred tasks and activities times the number of 

possible management nodes. This would be simply too much to stay within the 

budget for the computation time. A second reason why the activity search is not 

modeled in the behavior tree is that not all possible activities are known now and 

the activities are planned to be modifiable by the players. 

Four more or less different searches are required for the crewmembers. One search 

tries to find the current need and the best activity for it. The second search tries to 

find only the best activity for a already known current need. The third search tries to 
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find the best task for a crewmember. The last and fourth search is the search for an 

activity on a space station. 

In order to find the current need, all needs of a need system are considered 

beginning with the most urgent. A need can only be the current need if an activity 

exists that can satisfy this need. This requires checks for the occupation and 

availability of the activity. 

 

Figure 20: Crewmembers working in a fully loaded small space ship 

The search for the best activity has the same prerequisites for the possible activities. 

Therefore, both searches are pulled together if possible to decrease the calculation 

time. To find the best activity for the most urgent need, all activities, which lower 

this need’s value, are looked at. Each of these activities gets its utility value 

calculated. This is done with the technique of the utility systems from the category 

of the goal-oriented behavior.  

In the case of the crewmember activities, the utility is calculated out of this data:  

 the distance between the crewmember and the possible activity 

 the effect of the activity on the current need as well as the effect on other 

needs 

 both urgency values of the current need with different weightings 

 whether the possible activity is the current activity 

 the length of the queue in front of the activity 

 how much dirt and damage the activity does on the room of the activity 

Each of these values has a factor, which defines how much the value influences the 

overall utility of the activity. The distance between the crewmember and the possible 

activity is meant to decide between equal activities in different rooms. It should only 

decide for a less effective activity over a more effective if the latter is at the other 

end of a big ship. The walk speed or the required time to satisfy a need by doing the 
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activity are not considered anymore because it led to a hard-to-control non-linear 

change of the utility value over time. 

The calculation of the distance between the crewmember and the activity consumes 

a lot of computation time. In the first simple implementation, a simplified A*-path 

search was used for every utility calculation. This meant that this path search was 

done up to eight times for the crewmembers multiplied by about ten for the 

possible activities times about three for the behavior tree updates in the time-lapse-

mode, all in a single frame. It lowered the frame-rate in this situation even under 

one FPS. To solve this problem, two changes were made: the path-finding results are 

cached for the current position of the crewmember and the path finding is only 

done if the straight line between the crewmember and the possible activity is 

shorter than the actual distance to the best activity so far. The path-finding results 

are cached for each crewmember’s current position as the starting point. If he or 

she moves, the cache is emptied. This is probably not the best solution but it has an 

acceptable trade-off between computation time and memory usage. Because the 

crewmembers can only walk horizontally through the rooms and vertically through 

lifts, the distance is calculated like this:                                        

        . Here, the path-finding algorithm can only find longer paths than the straight 

line. Knowing that, activities with exactly the same utility values without the distance 

part can be omitted if the straight line is not shorter than the shortest path so far. 

This may sound like a rare occasion, but in fact, it brings back the computation time 

within reasonable limits. 

If several activities have exactly the same utility value, one is chosen randomly to 

improve the diversity of the behavior. In a concrete case, this makes crewmembers 

choose randomly the lift weights or running on treadmill activities of the fitness 

room, instead of choosing one of them only if the other is occupied. Both activities 

have equal effects but have different animation. Therefore, the decision does not 

matter for the need system but it does matter for the players. 

Finding the best task is a little different. Tasks have a priority value stored instead 

of a utility value. This priority is calculated in a similar way but it is independent 

from a certain crewmember. Instead, it depends on the room providing the task. 

These values are updated by the room structure-class which owns the task providers 

which in turn owns the tasks. The crewmembers take the tasks they have the skills 

for from their current task provider. They set these tasks ordered by their priority in 

the crewmembers’ task list. Then, they set the task with the highest priority in both 

lists as their current task. The priority values are calculated differently for each task 

type. The priority of the repair task for example is based on the damage of the 

providing room and its importance. This importance value causes crucial rooms like 

the cockpit to be repaired more often than e.g. cargo rooms. Other tasks such as 

the man turret tasks have simply the maximum priority value of one but only if the 

crew is in a space fight. However, each task type needs an own algorithm for the 

priority calculation. 

The last search for activity is the search while on a space station. Crewmembers find 

their current need just like on the ship by choosing the most urgent need which can 

be satisfied. As space stations have activities for all needs, the current need is 
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simply the most urgent one. Afterwards, crewmembers choose a random activity, 

which satisfies the current need. Therefore, only the effect of the activity and the 

need’s urgency are considered for the space station activities. Using a utility 

function like on the ship would cause crewmembers to do the activities with the 

greatest effect again and again exactly in the same order. Choosing the activities 

randomly improves the diversity of the behaviors a lot. 

It turned out through the use of utility functions that the utility values themselves 

are not important. Only their relation to each other is relevant for ordering the 

activities. As mentioned before, utility systems need to compare all actions with 

every motive what leads to                    in time. By choosing the most urgent 

need before searching an activity, the complexity is decreased to           

          which is significantly less and might make it possible to get Cosmonautica 

running on mobile devices. 

Although activities can be occupied, they are not excluded from the activity search. 

Instead, the utility function gives a penalty for the utility if the possible activity is 

not the current activity. This prevents crewmembers from switching their current 

activity to an equal one in the same room but it allows crewmembers to switch 

activities with others and keeps the path-finding exclusion method working. 

5.4. Artificial Intelligence of Space Ships in Fights 

Although the development of the space fights is not finished and the diplomacy 

system is in the concept phase, it should be described here to show for what 

behavior trees and utility functions can be used without a lot of modification. 

Space fights in Cosmonautica are triggered if the player is attacked by a pirate for 

example. Then, both the player ship and the pirate stay on the trajectory of the 

attacked ship to its destination planet. Only the relative velocities are important for 

the fight. Players can choose special actions from crewmembers doing tasks like 

piloting or operating a turret. Pilots provide different maneuvers such as a circle 

maneuver or fleeing. Turret gunners enable turrets to fire the corresponding 

projectiles or torpedoes. 

The behavior tree for the enemy ships is meant to simulate the player’s decisions as 

well as simplified crewmembers on the ship. As the crewmembers of the AI ships do 

not really exist for performance reasons, the re-loading times and tasks with the 

special actions have to be updated in a different way. The enemy ship has a room 

structure and room with tasks just like the player’s ship. However, its tasks are not 

done by crewmembers but updated by the ship behavior tree. In short, the artificial 

intelligence for the enemy ships plays the same role as the player: it triggers special 

actions if useful and makes simple plans like starting a fly-by maneuver only if the 

broadside is ready to fire. 

During the fight, both the player and the AI ship can make offers and demands via 

the diplomacy screen to settle the fight without destroying the enemy. Destroying it 

would cause most of its goods to be destroyed as well what makes the diplomacy 

demands give much better rewards. These demands have to be accepted by the 

recipient, then goods are exchanged and the fight ends. The ship AI has to be able 



Artificial Intelligence in Cosmonautica  50 

  

to make demands and accept incoming demands if they are acceptable. How much 

can be demanded depends on the information of the demanding party about the 

other ship and its interior. The AI should not be too easy to be taken in by the player 

and it should demand the player to pay a painful amount of goods without 

destroying him. Offers can consist of money, crewmembers, possible rooms, freight, 

truce, and ammunition from both parties. For such a wide range, a utility function 

will be needed which is not ready yet. 

 

Figure 21: Firing a gun turret at a pirate ship in a space fight while in a circular 

maneuver 

The root node of the enemy ship’s behavior tree is a parallel node with the policies 

all for success and all for failure. These policies are used, because the tree should 

try to update all parts but some might not be available. For example, the AI could 

have a ship without torpedo turrets or all turret gunners have died, causing the 

turret part to fail. At first, the diplomacy system is updated meaning that a new 

offer should be made if the win chances have significantly changed. This “make 

offer” node will use a utility function to rate the situation and make demands. 

The next parts are the parts for the different types of turrets. They are structured 

similar: at first, they update running action if existing, if not, they check whether all 

prerequisites are met and finally start a new action if it is useful. The update actions 

node is used to update the tasks of the AI ship. The gun turret can be used for 

attack and for defense. The defense fire tries to destroy an incoming torpedo. All 

turret parts check if the action, e.g. fire broadside can do an amount of damage 

which is worthy to the cost of the projectile. This will be calculated in utility 

functions evaluating the hit probability for example. 
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Figure 22: Behavior tree for the artificial intelligence of enemy ships 

The following part after the turrets is for the pilot. Similar to the turrets, the pilot 

action is updated as first. If there is nothing to update, the next maneuver is 

searched. It is chosen by evaluating the hull damages of both ships, the turrets’ 

loading states and some more information. Afterwards, other parts e.g. for hacking 

might be added. 
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6. Conclusion 

The behavior trees are now in use at Chasing Carrots and will probably stay. They 

are up and running in Cosmonautica controlling crewmembers as well as the AI 

ships. Utility functions have proved to be able to handle situations where too many 

options for behavior trees have to be evaluated. 

Behavior trees have shown these advantages: 

 The flexibility is very high as shown through the usage of behavior trees for 

AI ships what was not planned in the beginning. 

 The maintaining of existing behavior trees is fast and easy even without a 

graphical modeling tool. 

 The code of BT nodes can easily be re-used. 

 Entire BT nodes can be re-used. 

 Node instances can be re-used in the standard implementation but only if 

they do depend only on the call of their evaluation methods and not the 

initialization or termination. However, the memory-optimized implementation 

is recommended, instead of this special case. 

 Parts of the behavior trees can be easily re-used. 

 The code for the BT action nodes can encourage a good data capsulation 

between the classes related to the controlled class. 

 The quality of the behaviors is high enough for the usage of behavior trees in 

people simulations. 

 Action nodes can be as detailed as needed. They can contain and control 

entire state machines. 

Nothing is perfect. Behavior trees are no exception as they have shown these 

disadvantages: 

 The complexity of behavior trees can make them hard to understand. In 

order to understand the overall behavior of a character, one must understand 

the behavior tree as a whole as well as its special action nodes. This is 

especially difficult if the action node code and the BT modeling is done by 

different people. 

 The distribution of complexity between possibly multiple behavior trees for 

a single character, each behavior tree on its own, and their action nodes’ 

code is tricky. It can be useful to combine or split behavior trees. Putting too 

much complexity into the action nodes makes the behavior tree harder to 

understand as well as decreasing its re-usability. Usually, the entire 

complexity cannot be modeled into the behavior tree and trying it will result 

in a gigantic and slow behavior tree. 

 The action nodes need public or friend methods to work what deteriorates 

the capsulation of their controlled classes. 

 Too detailed policies, such as a concrete number of required fails for making 

a parallel node fail, are a possible source of errors. This is because the 

policies have to be changed when the number of child nodes of the parallel 

node changes. 
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 Splitting up similar things, like checking all activities and then choosing one, 

might be required to re-use nodes but cause code duplication and are 

inefficient if both nodes are executed in a row. 

 Debugging a behavior tree with the usual tools is difficult, mostly because 

of the useless call-stack. It is very helpful to see every node’s state of the 

entire behavior tree with one glance. Therefore, a debug print or an external 

tool is recommended. 

Here are some other experiences gained through Cosmonautica: 

 Utility functions are great as action nodes for behavior trees where a normal 

node structure is not applicable or needs too many resources. 

 Behavior trees are very powerful. More and more advanced behaviors might 

not be good for the game. Crewmembers in Cosmonautica for example do 

not avoid each other anymore during activities. Instead, they wait in a queue 

in front of the activity giving the player a chance to see the bottlenecks in the 

ship. 

 Regarding parallel nodes: 

o Parallel nodes with the policies all for success and one for failure are 

like sequences always beginning their evaluation at their first child. 

o Parallel nodes with the policies one for success and all for failure are 

like selectors always beginning their evaluation at their first child. 

o Parallel nodes with the policies all for success and all for failure just try 

to evaluate all their children beginning always at their first child. 

o Parallel nodes with the policies one for success and one for failure 

seem useless. 

 The beginning of the behavior tree development was a bit rushed. Some 

names and processes in the code are not consistent to the literature what 

might be confusing. 

 State-like behaviors in behavior trees usually require a small state machine 

controlled by action nodes. This decreases the complexity of these state 

machines to the absolute minimum and therefore increases their re-usability. 

It also makes the entire behavior tree harder to understand. However, this is 

still much better than a single big state machine. 

It has been shown that behavior trees are a good replacement for state machines in 

many cases. Especially if state machines would be very big or change their states 

very often, the behavior control should be done with a behavior tree instead. 

Behavior trees need an object-oriented programming language for the node classes 

with their common interface. Behavior trees are still useful even when state 

machines are needed by action nodes. 
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7. Outlook 

Although the crewmember and ship behaviors already work quite well, there is still 

much more work to do on Cosmonautica. The crewmembers do not react to each 

other now. Creating likes and dislikes amongst them will be kept rather simple. A 

first idea is that their relationships should change over time when being near each 

other or working together as two examples. The change of the relationship could be 

determined by special skills and modifications as well as their current relationship 

and similarities, which can be e.g. race, religion, gender, and skills. 

Depending on the progress of the development and the remaining time, ground 

mission might be added to Cosmonautica. The player will be able to select 

crewmembers to send them onto a planet or let them board another space ship. 

There, they will act as a squad fighting enemy characters or gathering resources and 

artifacts. 

Space fights were already mentioned. Some parts of them are still missing: cyber 

warfare, space fighters, more maneuvers and weapon types, energy shields, 

different enemy ship types with different behavior characteristics, and many more. 

The diplomacy system is also not implemented now. The main difficulty of this will 

be to estimate the win chances correctly and then make offers or demands without 

deceiving the player. 

Many more side-missions, which are much more complex, will be added. Some of 

these missions will require the player to support special needs of critters or guests, 

for example. Such additional characters might get another, maybe simplified, 

version of the crewmembers’ behavior tree. 

Now, the behavior tree system can only be used from within the C++ code. Although 

the game designers might be able to modify the behaviors directly in the code, it 

will not be as efficient as they need it. Therefore, a way has to be found to give them 

the possibility to modify the behaviors with scripts or a graphical tool. The first 

possibility could be to expose C++ functions to Lua, which generate new nodes and 

attach them to a behavior tree. Such scripts have to be executed before the 

controlled object instances, e.g. crewmembers, are constructed. A graphical tool 

could then create such scripts automatically, based on the modeled behavior trees. 

The system for artificial intelligence at Chasing Carrots consisting of behavior trees 

and utility functions has proved to be useful and will most likely stay for a while. 

The behaviors in Cosmonautica will be increased, modified, and extended. With 

behavior trees being such a flexible technique, these tasks will be less annoying and 

more efficient. 
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Glossary 

Bot: an artificial intelligence agent. Bots simulate the player behavior either to act as 

opponent or teammate in multiplayer games. Bots are a special variant of NPCs. 

Cycle (graph theory): a path through a graph with the same node at its beginning 

and at its end. 

Edge (graph theory): the connections between nodes, also known as vertices. In 

behavior trees, edges connect always one node of a higher hierarchy with a node of 

a lower hierarchy. The higher one is the parent node and the lower is its child node. 

Independent developer: is a game development company, also known as indie dev, 

that does not depend on money from a contracting entity like a publisher. 

Leaf node (graph theory): at the ends of a tree. These nodes are the only ones 

without child nodes. They stand for an action or a decision made by using a 

behavior tree. 

Loop (graph theory): an edge that has its beginning and end at the same node. 

Node: represents a decision or an action in a behavior tree. 

Non-player character: an object in the game world. It is usually similar to the 

player’s avatar. In contrast to this, an NPC cannot be controlled by any player. Thus, 

their behavior is only controlled by the program. 

Root node (graph theory): the root of a behavior tree is the top of the hierarchy. 

Every other node is directly or indirectly a child of this node. 

Scrum: an agile development methodology. It is a fast, iterative, and incremental 

process. It consists of meetings and artifacts to increase productivity but relies on 

an open working atmosphere. 

Unit test: a method of ensuring the functionality of a portion of code. It does not 

need to be a program on its own. Instead, it can be run by another program, the 

testing suite. 
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Appendix 

A Behavior Tree Base Nodes 

Important parts of the base node implementation: 

/* 
Adapted from the Behavior Tree Starter Kit from AiGameDev.com: 
https://github.com/aigamedev/btsk 
*/ 
  
#ifndef BehaviourTreeNodes_h_ 
#define BehaviourTreeNodes_h_ 
  
#include <vector> 
  
namespace BTStatus{ 
 enum Enum{ 
  Invalid, 
  Success, 
  Failure, 
  Running, 
  Aborted 
 }; 
} 
  
/* This is the abstract base class for the behavior tree nodes. */ 
class BTNode 
{ 
public: 
 BTNode(): mStatus(BTStatus::Invalid){}; 
   
 virtual void onInitialize() {} 
 virtual void onTerminate(BTStatus::Enum) {} 
 BTStatus::Enum tick() 
 { 
  if (mStatus != BTStatus::Running) 
   onInitialize(); 
  
  mStatus = update(); 
  
  if (mStatus != BTStatus::Running) 
   onTerminate(mStatus); 
  
  return mStatus; 
 } 
 void reset(){mStatus = BTStatus::Invalid;} 
 bool isTerminated() const {return mStatus == BTStatus::Success ||  
  mStatus == BTStatus::Failure;} 
 bool isRunning() const {return mStatus == BTStatus::Running;} 
 BTStatus::Enum getStatus() const {return mStatus;} 
 
 
 

https://github.com/aigamedev/btsk
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 void abort() 
 { 
  onTerminate(BTStatus::Aborted); 
  mStatus = BTStatus::Aborted; 
 } 
  
protected: 
 virtual BTStatus::Enum update() = 0; 
 BTStatus::Enum mStatus; 
}; 
  
template <class ObjectType> 
class BTAction : public BTNode  
{ 
public: 
 BTAction(ObjectType* object = NULL,  
  bool (ObjectType::*evaluationFunction)() = NULL)
 : mEvaluationFunction(evaluationFunction), mObject(object){} 
   
protected: 
 virtual BTStatus::Enum update() 
 { 
  if(mEvaluationFunction && mObject) 
  { 
   if((mObject->*mEvaluationFunction)()) 
    return BTStatus::Success; 
   else 
    return BTStatus::Failure; 
  } 
  else 
   return BTStatus::Invalid; 
 } 
  
 bool (ObjectType::*mEvaluationFunction)(); 
 ObjectType* mObject; 
}; 
  
class BTCompositeNode : public BTNode 
{ 
public: 
 virtual void onInitialize() 
 { mCurrentChildNode = mChildNodes.begin(); } 
  
 virtual void addChild(BTNode* child) 
 { mChildNodes.push_back(child); } 
  
 virtual void onTerminate(BTStatus::Enum) 
 { 
  for (BTNodeVector::iterator child(mChildNodes.begin());  
   child != mChildNodes.end(); ++child) 
  { 
   if((*child)->getStatus() == BTStatus::Running) 
    (*child)->abort(); 
  } 
 } 



Appendix  58 

  

  
protected: 
 virtual BTStatus::Enum update() = 0; 
 std::vector<BTNode*> mChildNodes; 
 std::vector<BTNode*>::iterator mCurrentChildNode; 
}; 
  
class BTSequence : public BTCompositeNode 
{ 
protected: 
 BTStatus::Enum update() 
 { 
  if (mResetEveryUpdate) 
   this->onInitialize(); 
  
  for (;;) 
  { 
   BTStatus::Enum s = (*mCurrentChildNode)->tick(); 
  
   if (s != BTStatus::Success) 
    return s; 
  
   if (++mCurrentChildNode == mChildNodes.end()) 
   { 
    this->onInitialize(); 
    return BTStatus::Success; 
   } 
  } 
 } 
}; 
  
class BTSelector : public BTCompositeNode 
{ 
protected: 
 BTStatus::Enum update() 
 { 
  for (;;) 
  { 
   BTStatus::Enum s = (*mCurrentChildNode)->tick(); 
  
   if (s != BTStatus::Failure) 
    return s; 
  
   if (++mCurrentChildNode == mChildNodes.end()) 
   { 
    return BTStatus::Failure; 
   } 
  } 
 } 
}; 
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class BTParallel : public BTCompositeNode 
{ 
public: 
 enum Policies{ 
  RequireOne, 
  RequireAll 
 }; 
  
 BTParallel(Policies successPolicy = RequireAll,  
  Policies failurePolicy = RequireOne) :  
 
 mSuccessPolicy(successPolicy), mFailurePolicy(failurePolicy){} 
 virtual ~BTParallel(); 
  
 virtual void onTerminate(BTStatus::Enum) 
 { 
  for (BTNodeVector::iterator it = mChildNodes.begin();  
   it != mChildNodes.end(); ++it) 
  { 
   BTNode& b = **it; 
   if (b.isRunning()) 
    b.abort(); 
  } 
 } 
   
protected: 
 Policies mSuccessPolicy; 
 Policies mFailurePolicy; 
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 BTStatus::Enum update() 
 { 
  int successCount = 0, failureCount = 0; 
  
  for (BTNodeVector::iterator it = mChildNodes.begin();  
   it != mChildNodes.end(); ++it) 
  { 
   BTNode& b = **it; 
   b.tick(); 
  
   if (b.getStatus() == BTStatus::Success) 
   { 
    ++successCount; 
    if (mSuccessPolicy == RequireAll &&  
     successCount == mChildNodes.size() || 
     mSuccessPolicy == RequireOne &&  
     successCount == 1) 
     return BTStatus::Success; 
   } 
   if (b.getStatus() == BTStatus::Failure) 
   { 
    ++failureCount; 
    if (mFailurePolicy == RequireOne &&  
     failureCount == 1 ||  
     mFailurePolicy == RequireAll &&  
     failureCount == mChildNodes.size()) 
     return BTStatus::Failure; 
   } 
  } 
  return BTStatus::Running; 
 } 
}; 
  
class BTDecorator : public BTNode 
{ 
public: 
 BTDecorator() : mChildNode(NULL) {} 
 BTDecorator(BTNode* child) : mChildNode(child) {} 
 virtual BTDecorator& setChild(BTNode* child) 
  {mChildNode = child; return *this;} 
 virtual void removeChild(){mChildNode = NULL;} 
  
protected: 
 virtual BTStatus::Enum update() = 0; 
 BTNode* mChildNode; 
}; 
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class BTReturnStateModificator : public BTDecorator 
{ 
public: 
 enum Policy{ 
  AlwaysInvalid, 
  AlwaysRunning, 
  AlwaysFailing, 
  AlwaysSuccessfull, 
  InvertFailureAndSuccessfull 
 }; 
  
 BTReturnStateModificator(BTNode* child = NULL,  
  Policy policy = InvertFailureAndSuccessfull) :  
  BTDecorator(child), mPolicy(policy) {} 
  
 void setPolicy(Policy newPolicy){mPolicy = newPolicy;} 
 Policy getPolicy(){return mPolicy;} 
   
protected: 
 Policy mPolicy; 
  
 virtual BTStatus::Enum update() 
 { 
  BTStatus::Enum result(BTStatus::Invalid); 
  if (mChildNode) 
   result = mChildNode->tick(); 
  
  switch(mPolicy) 
  { 
  case AlwaysInvalid: 
   return BTStatus::Invalid; 
   break; 
  case AlwaysRunning: 
   return BTStatus::Running; 
   break; 
  case AlwaysFailing: 
   return BTStatus::Failure; 
   break; 
  case AlwaysSuccessfull: 
   return BTStatus::Success; 
   break; 
  case InvertFailureAndSuccessfull: 
   if (result == BTStatus::Failure) 
    result = BTStatus::Success; 
   else if (result == BTStatus::Success) 
    result = BTStatus::Failure; 
   return result; 
   break; 
  default: 
   return BTStatus::Invalid; 
  } 
 } 
}; 
  
#endif // BehaviourTreeNodes_h_  
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